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1. Anti-Derivatives

If f =
dF

dx
, we call F the anti-derivative (or indefinite integral) of f .

Example 1 If f(x) = x, we can find its anti-derivative by realising
that for F (x) = 1

2x2

dF

dx
=

d

dx
(
1
2
x2) =

1
2
× 2x = x = f(x)

Thus F (x) = 1
2x2 is an anti-derivative of f(x) = x.

However, if C is a constant:
d

dx
(
1
2
x2 + C) =

1
2
× 2x = x

since the derivative of a constant is zero. The general anti-derivative
of x is thus 1

2x2 + C where C can be any constant.

Note that you should always check an anti-derivative F by differenti-
ating it and seeing that you recover f .
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Quiz Using
d(xn)
dx

= nxn−1 , select an anti-derivative of x6

(a) 6x5 (b)
1
5
x5 (c)

1
7
x7 (d)

1
6
x7

In general the anti-derivative or integral of xn is:

If f(x) = xn , then F (x) =
1

n + 1
xn+1 for n 6= −1

N.B. this rule does not apply to 1/x = x−1. Since the derivative of
ln(x) is 1/x, the anti-derivative of 1/x is ln(x) – see later.

Also note that since 1 = x0, the rule says that the anti-derivative of
1 is x. This is correct since the derivative of x is 1.
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We will now introduce two important properties of integrals, which
follow from the corresponding rules for derivatives.

If a is any constant and F (x) is the anti-derivative of f(x), then

d

dx
(aF (x)) = a

d

dx
F (x) = af(x) .

Thus

aF (x) is the anti-derivative of af(x)

Quiz Use this property to select the general anti-derivative of 3x
1
2

from the choices below.

(a) 2x
3
2 + C (b) 3

2x−
1
2 + C (c) 9

2x
3
2 + C (d) 6

√
x + C
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If
dF

dx
= f(x) and

dG

dx
= g(x) , from the sum rule of differentiation

d

dx
(F + G) =

d

dx
F +

d

dx
G = f(x) + g(x) .

(See the package on the product and quotient rules.) This leads
to the sum rule for integration:

If F (x) is the anti-derivative of f(x) and G(x) is the anti-derivative
of g(x), then F (x) + G(x) is the anti-derivative of f(x) + g(x).

Only one arbitrary constant C is needed in the anti-derivative of the
sum of two (or more) functions.

Quiz Use this property to find the general anti-derivative of 3x2−2x3.

(a) C (b) x3 − 1
2x4 + C (c) 3

2x3 − 2
3x4 + C (d) x3 + 2

3x + C

We now introduce the integral notation to represent anti-derivatives.



Section 2: Indefinite Integral Notation 7

2. Indefinite Integral Notation
The notation for an anti-derivative or indefinite integral is:

if
dF

dx
= f(x) , then

∫
f(x) dx = F (x) + C

Here
∫

is called the integral sign, while dx is called the measure and
C is called the integration constant. We read this as “the integral of
f of x with respect to x” or “the integral of f of x dx”.

In other words
∫

f(x) dx means the general anti-derivative of f(x)
including an integration constant.

Example 2 To calculate the integral
∫

x4 dx, we recall that the anti-
derivative of xn for n 6= −1 is xn+1/(n + 1). Here n = 4, so we have∫

x4 dx =
x4+1

4 + 1
+ C =

x5

5
+ C
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Quiz Select the correct result for the indefinite integral
∫ 1√

x
dx

(a) −1
2
x−

3
2 + C (b) 2

√
x + C (c)

1
2
x

1
2 + C (d)

2√
x2

+ C

The previous rules for anti-derivatives may be expressed in integral
notation as follows.

The integral of a function multiplied by any constant a is:∫
af(x)dx = a

∫
f(x)dx

The sum rule for integration states that:

∫
(f(x) + g(x))dx =

∫
f(x)dx +

∫
g(x)dx
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To be able to integrate a greater number of functions, it is convenient
first to recall the derivatives of some simple functions:

y sin(ax) cos(ax) eax ln(x)

dy

dx
a cos(ax) −a sin(ax) a eax 1

x

Exercise 1. From the above table of derivatives calculate the indef-
inite integrals of the following functions: (click on the green letters
for the solutions)
(a) sin(ax) , (b) cos(ax) ,

(c) eax , (d)
1
x
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These results give the following table of indefinite integrals (the inte-
gration constants are omitted for reasons of space):

y(x) xn (n 6= −1) sin(ax) cos(ax) eax 1
x∫

y(x)dx 1
n+1xn+1 −1

a
cos(ax)

1
a

sin(ax)
1
a

eax ln(x)

Exercise 2. From the above table, calculate the following integrals:
(click on the green letters for the solutions)

(a)
∫

x7 dx , (b)
∫

2 sin(3x) dx ,

(c)
∫

4 cos(2x) dx , (d)
∫

15 e−5s ds ,

(e)
∫ 3

w
dw , (f)

∫
( es + e−s) ds .
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Quiz Select the indefinite integral of 4 sin(5x) + 5 cos(3x).

(a) 20 cos(5x)− 15 sin(3x) + C (b) 4 sin( 5x2

2 ) + 5 cos(3x2

2 ) + C

(c) − 2
3 cos(5x) + 5

4 sin(3x) + C (d) − 4
5 cos(5x) + 5

3 sin(3x) + C

Exercise 3. It may be shown that
d

dx
[x(ln(x)− 1)] = ln(x) .

(See the package on the product and quotient rules of differenti-
ation.) From this result and the properties reviewed in the package
on logarithms calculate the following integrals: (click on the green
letters for the solutions)
(a)

∫
ln(x) dx , (b)

∫
ln(2x) dx ,

(c)
∫

ln(x3) dx , (d)
∫

ln(3x2) dx .

Hint expressions like ln(2) are constants!
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3. Fixing Integration Constants
Example 3 Consider a rocket whose velocity in metres per second
at time t seconds after launch is v = bt2 where b = 3 ms−3 . If at
time t = 2 s the rocket is at a position x = 30 m away from the launch
position, we can calculate its position at time t s as follows.

Velocity is the derivative of position with respect to time: v =
dx

dt
, so

it follows that x is the integral of v (= bt2 ms−1 ):

x =
∫

3t2 dt = 3× 1
3
t3 + C = t3 + C

The information that x = 30m at t = 2 s, can be substituted into the
above equation to find the value of C:

30 = 23 + C

30 = 8 + C

i.e., 22 = C .

Thus at time t s, the rocket is at x = t3 + 22 m from the launch site.
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Quiz If y =
∫

3x dx and at x = 2, it is measured that y = 4, calculate

the integration constant.
(a) C = 2 (b) C = 4 (c) C = −2 (d) C = 10

Quiz Find the position of an object at time t = 4 s if its velocity is
v = αt + β ms−1 for α = 2 ms−2 and β = 1 ms−1 and its position at
t = 1 s was x = 2m.

(a) 12 m (b) 24 m (c) 0 m (d) 20 m

Quiz Acceleration a is the rate of change of velocity v with respect to

time t, i.e., a =
dv

dt
.

If a ball is thrown upwards on the Earth, its acceleration is constant
and approximately a = −10 m s−2. If its initial velocity was 3ms−1,
when does the ball stop moving upwards (i.e., at what time is its
velocity zero)?

(a) 0.3 s (b) 1 s (c) 0.7 s (d) 0.5 s
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4. Final Quiz
Begin Quiz Choose the solutions from the options given.

1. Which of the following is an anti-derivative with respect to x of
f(x) = 2 cos(3x)?

(a) 2x cos(3x) (b) −6 sin(3x) (c) 2
3 sin(3x) (d) 2

3 sin( 3
2x2)

2. What is the integral with respect to x of f(x) = 11 exp(10x)?

(a)
11
10

exp(10x) + C (b) 11 exp(5x2) + C

(c) exp(11x) + C (d) 110 exp(10x) + C

3. If the speed of an object is given by v = bt−
1
2 ms−1 for b = 1ms−

1
2 ,

what is its position x at time t = 9 s if the object was at x = 3m
at t = 1 s?

(a) x = 7m (b) x = 11 m (c) x = 4m (d) x = 0m

End Quiz
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Solutions to Exercises
Exercise 1(a) To calculate the indefinite integral

∫
sin(ax) dx let us

use the table of derivatives to find the function whose derivative is
sin(ax).
From the table one can see that if y = cos(ax), then its derivative
with respect to x is

d

dx
(cos(ax)) = −a sin(ax), so

d

dx

(
−1

a
cos(ax)

)
= sin(ax) .

Thus one can conclude∫
sin(ax) dx = −1

a
cos(ax) + C .

Click on the green square to return
�
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Exercise 1(b) We have to find the indefinite integral of cos(ax).
From the table of derivatives we have

d

dx
(sin(ax)) = a cos(ax), so

d

dx

(
1
a

sin(ax)
)

= cos(ax) .

This implies ∫
cos(ax) dx =

1
a

sin(ax) + C .

Click on the green square to return
�
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Exercise 1(c) We have to find the integral of eax. From the table of
derivatives

d

dx
(eax) = a eax, so

d

dx

(
1
a
eax

)
= eax .

Thus the indefinite integral of eax is∫
eax dx =

1
a

eax + C .

Click on the green square to return �
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Exercise 1(d) We need to find the function whose derivative is
1
x

.

From the table of derivatives we see that the derivative of ln(x) with
respect to x is

d

dx
(ln(x)) =

1
x

.

This implies that ∫
1
x

dx = ln(x) + C .

Click on the green square to return �
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Exercise 2(a) We want to calculate
∫

x7 dx. From the table of in-
definite integrals, for any n 6= −1,∫

xndx =
1

n + 1
xn+1 .

In the case of n = 7(6= −1),∫
x7dx =

1
7 + 1

× x7+1 + C

=
1
8
x8 + C .

Checking this:

d

dx

(
1
8
x8 + C

)
=

1
8

d

dx
x8 =

1
8
× 8 x7 = x7 .

Click on the green square to return
�
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Exercise 2(b) To calculate the integral
∫

2 sin(3x) dx we use the
formula ∫

sin(ax)dx = −1
a

cos(ax) .

In our case a = 3. Thus we have∫
2 sin(3x)dx = 2

∫
sin(3x)dx = 2×

(
−1

3
cos(3x)

)
+ C

= −2
3

cos(3x) + C .

Checking:

d

dx

(
−2

3
cos(3x) + C

)
= −2

3
d

dx
cos(3x) = −2

3
×(−3 sin(3x)) = 2 sin(3x).

Click on the green square to return
�
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Exercise 2(c) To calculate the integral
∫

4 cos(2x) dx we use the for-
mula ∫

cos(ax)dx =
1
a

sin(ax) ,

with a = 2. This yields∫
4 cos(2x)dx = 4

∫
cos(2x)dx

= 4×
(

1
2

sin(2x)
)

= 2 sin(2x) + C .

It may be checked that
d

dx
(2 sin(2x) + C) = 2

d

dx
sin(2x) = 2× (2 cos(2x)) = 4 cos(2x) .

Click on the green square to return
�



Solutions to Exercises 22

Exercise 2(d) To find the integral
∫

15 e−5s ds we use the formula∫
eaxdx =

1
a
eax

with a = −5. This gives∫
15e−5sds = 15

∫
e−5sds

= 15×
(
−1

5
e−5s

)
= −3 e−5s + C ,

and indeed
d

ds

(
−3 e−5s + C

)
= −3

d

ds
e−5s = −3×

(
−5e−5s

)
= 15e−5s.

Click on the green square to return
�
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Exercise 2(e) To find the integral
∫ 3

w
dw we use the formula∫

1
x

dx = ln(x) .

Thus we have∫
3
w

dw =
∫

3× 1
w

dw = 3
∫

1
w

dw

= 3 ln(w) + C .

This can be checked as follows
d

dw
(3 ln(w) + C) = 3

d

dw
ln(w) = 3× 1

w
=

3
w

.

Click on the green square to return �
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Exercise 2(f) To find the integral
∫
(es + e−s) ds we use the sum rule

for integrals, rewriting it as the sum of two integrals∫
( es + e−s) ds =

∫
es ds +

∫
e−s ds

and then use ∫
eax dx =

1
a

eax.

Take a = 1 in the first integral and a = −1 in the second integral.
This implies ∫

( es + e−s) ds =
∫

es ds +
∫

e−s ds

= es +
(

1
−1

)
e−s + C

= es − e−s + C .

Click on the green square to return �
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Exercise 3(a) To calculate the indefinite integral
∫

ln(x) dx we have
to find the function whose derivative is ln(x). We are given

d

dx
[x(ln(x)− 1)] = ln(x) .

This implies ∫
ln(x) dx = x [ln(x)− 1] + C .

This can be checked by differentiating x [ln(x)− 1] + C using the
product rule. (See the package on the product and quotient rules
of differentiation.)
Click on the green square to return

�
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Exercise 3(b) To calculate the indefinite integral
∫

ln(2x) dx we
recall the following property of logarithms

ln(ax) = ln(a) + ln(x)

and then use the integral
∫

ln(x) dx = x [ln(x)− 1] + C calculated in
Exercise 3(a). This gives∫

ln(2x) dx =
∫

(ln(2) + ln(x)) dx

= ln(2)×
∫

1 dx +
∫

ln(x) dx

= x ln(2) + x (ln(x)− 1) + C

= x (ln(2) + ln(x)− 1) + C

= x (ln(2x)− 1) + C .

In the last line we used ln(2) + ln(x) = ln(2x).
Click on the green square to return

�
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Exercise 3(c) To calculate the indefinite integral
∫

ln(x3) dx we first
recall from the package on logarithms that

ln(xn) = n ln(x)

and the integral ∫
ln(x) dx = x [ln(x)− 1] + C

calculated in Exercise 3(a). This all gives∫
ln(x3) dx =

∫
(3 ln(x)) dx

= 3×
∫

ln(x) dx

= 3x (ln(x)− 1) + C .

Click on the green square to return �
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Exercise 3(d) Using the rules from the package on logarithms,
ln(3x2) may be simplified

ln(3x2) = ln(3) + ln(x2) = ln(3) + 2 ln(x) .

Thus ∫
ln(3x2) dx =

∫
(ln(3) + 2 ln(x)) dx

= ln(3)×
∫

1 dx + 2×
∫

ln(x) dx

= ln(3)x + 2x [ln(x)− 1] + C

= x [ln(3) + 2 ln(x)− 2] + C

= x
[
ln(3x2)− 2

]
+ C ,

where the final expression for ln(3x2) is obtained by using the rules
of logarithms.
Click on the green square to return �
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Solutions to Quizzes
Solution to Quiz: To find an anti-derivative of x6 first calculate the
derivative of F (x) = 1

7x7. Using the basic formula

d

dx
xn = nxn−1

with n = 7
dF

dx
=

d

dx

(
1
7
x7

)
(1)

=
1
7

d

dx

(
x7

)
(2)

=
1
7
× 7 x7−1 (3)

= x6 . (4)

This result shows that the function F (x) = 1
7x7 + C is the general

anti-derivative of f(x) = x6. End Quiz
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Solution to Quiz: To find the general anti-derivative of 3x
1
2 , recall

that for constant a the anti-derivative of af(x) is aF (x) , where F (x)
is the anti-derivative of f(x).
Thus the anti-derivative of 3x

1
2 is 3×

(
the anti-derivative of x

1
2

)
.

To calculate the anti-derivative of x
1
2 we recall the anti-derivative of

f(x) = xn is F (x) = 1
n+1xn+1 for n 6= −1. In our case n = 1

2 and
therefore this result can be used. The anti-derivative of x

1
2 is thus

1
1
2 + 1

x( 1
2+1) =

1
3/2

x3/2 = 1× 2
3

x
3
2 =

2
3
x

3
2 .

Thus the general anti-derivative of 3x
1
2 is 3× 2

3x
3
2 + C = 2x

3
2 + C.

This result may be checked by differentiating F (x) = 2x3/2 + C.
End Quiz
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Solution to Quiz: To find the general anti-derivative of 3x2−2x3, we
use the sum rule for anti-derivatives. The anti-derivative of 3x2−2x3

is
(
anti-derivative of 3x2

)
−

(
anti-derivative of 2x3

)
. Since the anti-

derivative of f(x) = xn is F (x) = 1
n+1xn+1 for n 6= −1, for n = 2:

anti-derivative of x2 =
1

2 + 1
x2+1 =

1
3
x3 .

Thus the anti-derivative of 3x2 is

3×
(
anti-derivative of x2

)
= 3 × 1

3
x3 = x3.

Similarly the anti-derivative of 2x3 is

2×
(
anti-derivative of x3

)
= 2 × 1

3 + 1
x3+1 =

1
2
x4.

Putting these results together we find that the general anti-derivative
of 3x2 − 2x3 is

F (x) = x3 − 1
2
x4 + C ,

which may be confirmed by differentiation. End Quiz
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Solution to Quiz: To calculate the indefinite integral∫
1√
x

dx =
∫

1
x1/2

dx =
∫

x−1/2 dx

we recall the basic result, that the anti-derivative of f(x) = xn is
F (x) = 1

n+1xn+1 for n 6= −1. In this case n = − 1
2 and so∫

x−1/2 dx =
1

− 1
2 + 1

x(− 1
2+1) + C =

1
1
2

x
1
2 + C

= 1× 2
1
x

1
2 + C = 2x

1
2 + C

= 2
√

x + C ,

where we recall that dividing by a fraction is equivalent to multiplying
by its inverse (see the package on fractions). End Quiz
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Solution to Quiz: To evaluate
∫
(4 sin(5x) + 5 cos(3x)) dx we use the

sum rule for indefinite integrals to rewrite the integral as the sum of
two integrals. Using∫

sin(ax) dx = −1
a

cos(ax) and
∫

cos(ax) dx =
1
a

sin(ax)

we get∫
(4 sin(5x) + 5 cos(3x)) dx = 4

∫
sin(5x) dx + 5

∫
cos(3x) dx

= 4× (−1
5
) cos(5x) + 5× 1

3
sin(3x) + C

= −4
5

cos(5x) +
5
3

sin(3x) + C .

This can be checked by differentiation. End Quiz



Solutions to Quizzes 34

Solution to Quiz: If y =
∫

3x dx and at x = 2 , y = 4 then

y =
∫

3x dx = 3×
∫

x dx

= 3× 1
2
x1+1 + C

=
3
2
x2 + C

is the general solution. Substituting x = 2 and y = 4 into the above
equation, the value of C is obtained

4 =
3
2
× (2)2 + C

4 = 6 + C

i.e., C = −2 .

Therefore, for all x, y = 3
2x2 − 2 . End Quiz
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Solution to Quiz:
We are told that v = αt + β with α = 2ms−2, β = 1ms−1 and at
t = 1s , x = 2m. Since x is the integral of v:

x =
∫

v dt =
∫

(2t + 1) dt = 2×
∫

t dt +
∫

1 dt = t2 + t + C .

The position at time t = 1 s was x = 2 m so these values may be
substituted into the above equation to find C:

2 = 12 + 1 + C

2 = 2 + C

i.e., 0 = C .

Therefore, for all t , x = t2 + t + 0 = t2 + t. At t = 4 s,

x = (4)2 + 4 = 16 + 4 = 20 m.

End Quiz
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Solution to Quiz: We are given a =
dv

dt
= −10ms−2 and initial

velocity v = 3ms−1, and want to find when the velocity is zero. Since

a =
dv

dt
, velocity is the integral of acceleration, v =

∫
a dt. The accel-

eration of the ball is constant, a = −10ms−2 , so that

v =
∫

(−10) dt = −10×
∫

dt = −10t + C .

At t = 0 , v = 3ms−1, so these values may be substituted into the
above equation to find the constant C:

3 = −10× 0 + C

3 = C .

Thus v = −10t + 3 for this problem. Therefore if v = 0

0 = −10t + 3
10t = 3 , t = 3/10 .

The ball stops moving upwards at 0.3 s. End Quiz
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